

GCE
Edexcel GCE
Statistics S2 (6684)

June 2006

advancing learning, changing lives

Mark Scheme (Results)

J une 6684 Statistics S2 Mark Scheme

Question Number	Scheme		rks
1.(a)	Saves time / cheaper / easier any one or A census/asking all members takes a long time or is expensive or difficult to carry out	B1	(1)
(b)	<u>List, register or database</u> of <u>all</u> club <u>members/golfers</u> or <u>Full membership list</u>	B1	(1)
(c)	Club member(s)	B1	(1)
2.(a)	P(L < -2.6) = $1.4 \times \frac{1}{8} = \frac{7}{40}$ or 0.175 or equivalent	B1	(1)
(b)	P (L < -3.0 or L > 3.0) = $2 \times \left(1 \times \frac{1}{8}\right) = \frac{1}{4}$ M1 for 1/8 seen	M1;A1	(2)
(c)	P (within 3mm) = $1 - \frac{1}{4} = 0.75$ B(20,0.75) recognises binomial	B1	
	$Using \ B(20,p) \\$ Let X represent number of rods within 3mm	M1	
	$P(X \le 9/p = 0.25)$ or $1 - P(X \le 10/p = 0.75)$	M1	
	= 0.9861 awrt 0.9861	A1	(4)

Question Number	Scheme		Ма	rks
3.	Let <i>X</i> represent the number of properties sold in a week			
a)	$\therefore X \sim P_o(7)$	must be in part a	B1	
	Sales occur independently/randomly, singly, at a constant rate	context needed once	B1 B1	(2)
b)	P ($X = 5$) = P($X \le 5$) - P($X \le 4$) or $\frac{7^5 e^{-7}}{5!}$		M1	(3)
	= 0.3007 - 0.1730 $= 0.1277$	awrt 0.128	A1	(2)
c)	$P(X > 181) \approx P(Y \ge 181.5)$ where $Y \sim N(168, 168)$	N (168, 168)	B1	(2)
	$= P \left(z \ge \frac{181.5 - 168}{\sqrt{168}} \right)$	\pm 0.5 stand with μ and σ	M1 M1	
	Give A1 for 1.04 = $P(z \ge 1.04)$	4 or correct expression	A1	
	=1-0.8508	attempt correct area $1-p$ where $p > 0.5$	M1	
	= 0.1492	awrt 0.149	A1	(6)
				(0)

Question Number	Scheme		
4.	Let <i>X</i> represent the number of breakdowns in a week.		
a)	$X \sim P_0 (1.25)$ implied	B1	
	$P(X < 3) = P(0) + P(1) + P(2)$ or $P(X \le 2)$	M1	
	$= e^{-1.25} \left(1 + 1.25 + \frac{(1.25)^2}{2!} \right)$	A1	
	= 0.868467 awrt 0.868 or 0.8685	A1 (4)	
b)	$H_0: \lambda = 1.25; H_1: \lambda \neq 1.25$ (or $H_0: \lambda = 5; H_1: \lambda \neq 5$) λ or μ	B1 B1	
	Let <i>Y</i> represent the number of breakdowns in 4 weeks		
	Under H_0 , $Y \sim P_0(5)$ may be implied	B1	
	$P(Y \ge 11) = 1 - P(Y \le 10)$ or $P(X \ge 11) = 0.0137$	M1	
	One needed for M $P(X \ge 10) = 0.0318$		
	$= 0.0137$ CR $X \ge 11$	A1	
	$0.0137 < 0.025, 0.0274 < 0.05, 0.9863 > 0.975, 0.9726 > 0.95 \text{ or } 11 \ge 11$ any .allow %	M1	
		B1√ (7)	

Question Number	Scheme			Marks
5. (a)	Binomial		B1	(1)
	Let <i>X</i> represent the number of green mugs in a sample			(1)
(b)	X~B (10, 0.06)	may be implied or seen in part a	B1	
	$P(X=3) = {}^{10}C_3(0.06)^3(0.94)^7$	${}^{10}\text{C}_3(p)^3(1-p)^7$	M1	
	= 0.016808	awrt 0.0168	A1	(2)
(c)	Let <i>X</i> represent number of green mugs in a sample of size 125			(3)
(i)	$X \sim P_0(125 \times 0.06 = 7.5)$	may be implied	В1	
	$P(10 \le X \le 13) = P(X \le 13) - P(X \le 9)$		M1	
	=0.9784-0.7764			
	= 0.2020	awrt 0.202	A1	(3)
(ii)	$P(10 \le X \le 13) \approx P(9.5 \le Y \le 13.5)$ where Y \sqcup N(7.5, 7.05)	7.05	B1	(3)
	$= P\left(\frac{9.5 - 7.5}{\sqrt{7.05}} \le z \le \frac{13.5 - 7.5}{\sqrt{7.05}}\right)$	9.5, 13.5 ± 0.5 stand.	B1 M1 M1	
	both values or both $P(0.75 \le z \le 2.26)$	h correct expressions. awrt 0.75 and 2.26	A1	
	= 0.2147	awrt 0.214or 0.215	A1	(6)

Question Number	Scheme			ks
6a)	$\int_{1}^{4} \frac{I+x}{k} dx = 1$	$\int f(x) = 1$ Area = 1	M1	
	$\left[\frac{x}{k} + \frac{x^2}{2k}\right]_1^4 = 1$	correct integral/correct expression	A1	
	$k=\frac{21}{2} *$	cso	A1	(3)
(b)	$P(X \le x_0) = \int_1^{x_0} \frac{2}{21} (1+x)$	$\int f(x)$ variable limit or +C	M1	
	$= \left[\frac{2x}{21} + \frac{x^2}{21} \right]_1^{x_0}$	correct integral $+$ limit of 1 May have k in	A1	
	$= \frac{2x_0 + {x_0}^2 - 3}{21} \text{ or } \frac{(3+x)(x-1)}{21}$	iviay nave k m	A1	
	$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x^2 + 2x - 3}{21} & 1 \le x < 4 \\ 1 & x \ge 4 \end{cases}$	middle; ends	B1√; B1	(5)
(c)	$E(X) = \int_{1}^{4} \frac{2x}{21} (1+x) dx$	valid attempt $\int x f(x)$	M1	(5)
	$= \left[\frac{x^2}{21} + \frac{2x^3}{63}\right]_1^4$	x^2 and x^3 correct integration	A1	
	$=\frac{171}{63}=2\frac{5}{7}=\frac{19}{7}=2.7142$	awrt 2.71	A1	(3)

Question Number	Scheme		
	$F(m) = 0.5 \implies \frac{x^2 + 2x - 3}{21} = \frac{1}{2}$ putting their $F(x) = 0.5$	M1	
	$\therefore 2x^2 + 4x - 27 = 0 \text{or equiv}$ $\therefore x = \frac{-4 \pm \sqrt{16 - 4.2(-27)}}{4} \qquad \text{attempt their 3 term quadratic}$ $\therefore x = -1 \pm 3.8078$ i.e. $x = 2.8078$ awrt 2.81	M1 A1 (3)	
e) f)	Mode = 4 Mean < median < mode (⇒ negative skew) Or Mean < median allow numbers in place of words	B1 (1) B1 (1)	
	w diagram but line must not cross y axis		

Question Number	Scheme		Ma	rks
7.a)	Let <i>X</i> represent the number of bowls with minor defe	ects.		
	$X \sim B; (25, 0.20)$	may be implied	B1; B1	
	$P(X \le 1) = 0.0274$ or $P(X = 0) = 0.0038$	need to see at least one. prob for $X \le \text{no For M1}$	M1A1	
	$P(X \le 9) = 0.9827; \Rightarrow P(X \ge 10) = 0.0173$	either	A1	
	$\therefore CR \text{ is } \{X \le 1 \cup X \ge 10\}$		A1	
o)	Significance level = $0.0274 + 0.0173$			(6
	= 0.0447 or 4.477%	awrt 0.0447	B1	/1
C)	$H_0: p = 0.20; H_1: p < 0.20;$		B1 B1	(1
	Let Y represent number of bowls with minor defects			
	Under $H_0 Y \sim B (20, 0.20)$	may be implied	B1	
	P ($Y \le 2$) or P($Y \le 2$) = 0.2061 P($Y \le 1$) = 0.0692	either	M1	
	$= 0.2061$ CR $Y \le 1$		A1	
	0.2061 > 0.10 or $0.7939 < 0.9$ or $2 > 1$	their p	M1	
	Insufficient evidence to suggest that the proportion of	of defective bowls has decreased.	B1√	(7